type
status
date
slug
summary
tags
category
icon
password
论文原文
简述
PaDiM is a patch based algorithm. It relies on a pre-trained CNN feature extractor. The image is broken into patches and embeddings are extracted from each patch using different layers of the feature extractors. The activation vectors from different layers are concatenated to get embedding vectors carrying information from different semantic levels and resolutions. This helps encode fine grained and global contexts. However, since the generated embedding vectors may carry redundant information, dimensions are reduced using random selection. A multivariate gaussian distribution is generated for each patch embedding across the entire training batch. Thus, for each patch of the set of training images, we have a different multivariate gaussian distribution. These gaussian distributions are represented as a matrix of gaussian parameters.During inference, Mahalanobis distance is used to score each patch position of the test image. It uses the inverse of the covariance matrix calculated for the patch during training. The matrix of Mahalanobis distances forms the anomaly map with higher scores indicating anomalous regions.
Architecture
使用预训练CNN对N张正常样本图提取activation vectors,不同层的vector被连接(concatenate)起来成 patch embedding,为减少embeding中的冗余信息,使用随机选择进行降维。之后为每个patch embedding 生成多元高斯分布(一张图像有多个patch,一个patch对应一个不同的高斯多元分布),其中每个补丁位置由一个高斯分布描述,利用多元高斯分布来获得正常类的概率表示。
推理时,计算测试图每一个 patch 的嵌入向量 和相应的patch的已学习的高斯分布 之间的的Mahalanobias距离
计算 It uses the inverse of the covariance matrix calculated for the patch during training? 根据马氏距离形成异常图。
Patch Distribution Modeling
特征提取
正样本学习
计算异常图
补充知识
PRO-score
马氏距离
Mahalanobias distance,中译 马氏距离
SPADE
实验
消融实验
分别探究了 层间相关性 、维度缩减 的影响
未对齐数据集
可扩展性
复杂度分析:时间复杂度(训练时间和数据集大小成线性)和内存复杂度(取决于图像分辨率)
参考
- 作者:Wtoy
- 链接:https://blog.wtoy.top/article/2024/a41c6a2a-7323-42f7-a470-fb1802bcd753
- 声明:本文采用 CC BY-NC-SA 4.0 许可协议,转载请注明出处。