发布于: 2024-7-10最后更新: 2024-7-16字数 00 分钟

type
status
date
slug
summary
tags
category
icon
password

论文原文

简述

PaDiM is a patch based algorithm. It relies on a pre-trained CNN feature extractor. The image is broken into patches and embeddings are extracted from each patch using different layers of the feature extractors. The activation vectors from different layers are concatenated to get embedding vectors carrying information from different semantic levels and resolutions. This helps encode fine grained and global contexts. However, since the generated embedding vectors may carry redundant information, dimensions are reduced using random selection. A multivariate gaussian distribution is generated for each patch embedding across the entire training batch. Thus, for each patch of the set of training images, we have a different multivariate gaussian distribution. These gaussian distributions are represented as a matrix of gaussian parameters.
During inference, Mahalanobis distance is used to score each patch position of the test image. It uses the inverse of the covariance matrix calculated for the patch during training. The matrix of Mahalanobis distances forms the anomaly map with higher scores indicating anomalous regions.
 

Architecture

关键点:patch-based;pre-train CNN;activation vector;rondom selection;multivariate Gaussian distribution; Mahalanobias distance;
关键点:patch-based;pre-train CNN;activation vector;rondom selection;multivariate Gaussian distribution; Mahalanobias distance;
 
使用预训练CNN对N张正常样本图提取activation vectors,不同层的vector被连接(concatenate)起来成 patch embedding,为减少embeding中的冗余信息,使用随机选择进行降维。之后为每个patch embedding 生成多元高斯分布(一张图像有多个patch,一个patch对应一个不同的高斯多元分布),其中每个补丁位置由一个高斯分布描述,利用多元高斯分布来获得正常类的概率表示。
推理时,计算测试图每一个 patch 的嵌入向量 和相应的patch的已学习的高斯分布 之间的的Mahalanobias距离
 
计算 It uses the inverse of the covariance matrix calculated for the patch during training? 根据马氏距离形成异常图。

Patch Distribution Modeling

 

特征提取

正样本学习

 

计算异常图

补充知识

PRO-score

 

马氏距离

Mahalanobias distance,中译 马氏距离

SPADE

实验

消融实验

分别探究了 层间相关性 、维度缩减 的影响

未对齐数据集

可扩展性

复杂度分析:时间复杂度(训练时间和数据集大小成线性)和内存复杂度(取决于图像分辨率)

参考


Loading...
Optical Flow(一):传统光流

Optical Flow(一):传统光流

光流法—简单而有效的定位、识别、分割利器


Anomalib异常检测(二):PatchCore

Anomalib异常检测(二):PatchCore

Patchcore—基于xx


公告
🎉Wtoy 全新博客已上线 🎉
-- 未来发展 ---
https://blog.wtoy.top 打算长期发展成为一个高质量的博客论坛,涵盖计算机、人工智能、生活杂记等方面的内容。本人尽力去更新这个博客,恕本人能力有限,博文中会有些许不足之处,恳请大家批评指正,多多包涵!

-- TODO ---
⭐评论区
自定义样式(瞎搞
友链
越来越多质(guan)量(shui)文章
⚠️
声明:本站内容均为个人原创,若有抄袭、侵权等行为,请及时用邮箱联系我。此外,本站所有内容不保证绝对正确性,若因引用本站内容而导致的问题,本站概不负责。